
How to Calculate the Size of Encrypted Data?

If you need to store ciphertext in a database table (or array variable), you may need to know how long a

ciphertext value can be so you can allocate enough memory to hold it. This article explains how to calculate the

size of ciphertext produced by different cryptographic algorithms. In addition, it highlights the issues associated

with the ciphertext storage and briefly describes several aspects of cryptography, which are essential for
understanding the topic. Please be aware that the article intentionally oversimplifies certain concepts to make

them easier to understand for novice programmers. For additional information about the relevant subjects see

References.

Hashing

Hashing is commonly used for password-based authentication. Calculating the size of hashed data is easy

because it does not change for a given hashing algorithm (or hash function). Each hashing algorithm generates

the same number of bytes irrespective of the plaintext size. It does not matter whether you hash a one-character

string or a thousand-character string; as long as you use the same hashing algorithm, the size of the resulting hash

values will always be the same. Table 1 defines the hash sizes produced by different hashing algorithms.

Table 1. Hash sizes

Hashing algorithm Hash size

MD5* 16 bytes (128 bits)

SHA-1 20 bytes (160 bits)

SHA-256 32 bytes (256 bits)

SHA-384 48 bytes (384 bits)

SHA-512 64 bytes (512 bits)

* The MD5 hashing algorithm is not recommended.

If you use hashing with salt (as you should), you will need to store the salt values along with the ciphertext. You

can either store the salt values in a separate column or appended them to the generated hashes; since the length

of the hash values is fixed, your program can easily extract salt from the stored ciphertext. If you decide to store

salt appended to the ciphertext, do not forget to increase the size of the column holding it.

Encryption

The size of ciphertext produced by two-way encryption depends primarily on two factors: (a) length of the

plaintext value and (b) type of encryption algorithm. With respect to their effects on the size of encrypted data,

encryption algorithms can be categorized as stream ciphers and block ciphers

Stream ciphers

Encryption algorithms using stream ciphers (such as RC4) encrypt plaintext sequentially, one bit at a time. The

size of the resulting ciphertext should be exactly the same as the original plaintext value, which makes this case

even more trivial than hashing. (Note: In general, you should avoid using stream ciphers.)

http://www.hyperdictionary.com/computing/ciphertext
http://en.wikipedia.org/wiki/Cryptography
http://www.rsasecurity.com/rsalabs/node.asp?id=2176
http://en.wikipedia.org/wiki/Plaintext
http://www.faqs.org/rfcs/rfc1321.html
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://www.obviex.com//Samples/Hash.aspx
http://www.rsasecurity.com/rsalabs/node.asp?id=2174
http://www.rsasecurity.com/rsalabs/node.asp?id=2168
http://www.rsasecurity.com/rsalabs/node.asp?id=2250

Block ciphers

Better encryption algorithms use block ciphers. These algorithms include symmetric-key algorithms, such as

Rijndael (also known as AES), Triple-DES, and RC6, as well as public-key algorithms, such as RSA. The

algorithms using block ciphers encrypt several bits of plaintext data in one step. The bits encrypted in one step

make up what is called an encryption block. If an encryption algorithm uses block ciphers, the size of the

ciphertext will always be a multiple of the encryption block size.

Encryption block sizes vary between different encryption algorithms and may also vary within the same

encryption algorithm. For example, the Rijndael algorithm can use 128, 192, or 256-bit blocks. It is worth noting

that not all block sizes supported by the algorithm specification, may be provided in every implementation. For
instance, the Microsoft Cryptographic Service Provider (CSP) version of the Rijndael algorithm only supports

128-bit blocks, while the .NET implementation (RijndaelManaged) supports all three options.

Padding

If the size of the original plaintext encrypted using a block-cipher algorithm is not an exact multiple of the block

size, padding will be used to make up the difference. Padding means appending additional (mostly meaningless)

bytes at the end of the plaintext data before performing encryption. Because after decrypting data the algorithm

must know how many bytes of padding must be removed from the result, the padding bytes must also contain
certain information (metadata) about these bytes. For example, when the PKCS #5 padding is used, each
padding byte will contain the value indicating the total number of padding bytes (see Figure 1).

Figure 1. PKCS #5 padding

H e l l o , w o r l d ! 0x3 0x3 0x3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

You do not need to know much about padding except that it may increase the size of the ciphertext. If the size of
the original data (encrypted using a block-cipher algorithm with padding) is an exact multiple of the encryption

block size, padding will increase the size of the ciphertext by one block. In case of public-key encryption,
padding will decrease the maximum length of the plaintext data that can be encrypted with a key of certain length.

Examples

Now that you are familiar with the terminology, let us do some math. To calculate the size of the ciphertext

produced by the block-cipher encryption, you will need the following information:

a. Length of the plaintext value
b. Encryption block size

c. Padding information (if padding is used)

In the most generic case, the size of the ciphertext can be calculated as:

CipherText = PlainText + Block - (PlainText MOD Block)

where CipherText, PlainText, and Block indicate the sizes of the ciphertext, plaintext, and encryption block
respectively. Basically, the resulting ciphertext size is computed as the size of the plaintext extended to the next

http://www.rsasecurity.com/rsalabs/node.asp?id=2166
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/
http://en.wikipedia.org/wiki/AES
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www.rsasecurity.com/rsalabs/node.asp?id=2251
http://www.rsasecurity.com/rsalabs/node.asp?id=2165
http://www.rsasecurity.com/rsalabs/node.asp?id=2213
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/seccrypto/security/microsoft_cryptographic_service_providers.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfsystemsecuritycryptographyrijndaelmanagedclasstopic.asp
http://www.di-mgt.com.au/cryptopad.html
http://www.faqs.org/rfcs/rfc2898.html

block. If padding is used and the size of the plaintext is an exact multiple of the block size, one extra block

containing padding information will be added.

Let's say that you want to encrypt a nine-digit Social Security Number (SSN) using the Rijndael encryption
algorithm with the 128-bit (16-byte) block size and PKCS #7 padding. (For the purpose of the illustration,

assume that dashes are removed from the SSN value before the encryption, so that "123-45-6789" becomes
"123456789", and the value is treated as a string, not as a number.) If the digits in the SSN are defined as

ASCII characters, the size of the ciphertext can be calculated as:

CipherText = 9 + 16 - (9 MOD 16) = 9 + 16 - 9 = 16 (bytes)

Notice that if the size of the plaintext value is the exact multiple of the block size, an extra block containing
padding information will be appended to the ciphertext. For example, if you are to encrypt a 16-digit credit card

number (defined as a 16-character ASCII string), the size of the ciphertext will be:

CipherText = 16 + 16 - (16 MOD 16) = 16 + 16 - 0 = 32 (bytes)

Unicode

To determine the size of an encrypted string, you must consider the character format. Because most encryption
routines operate on byte arrays, you have to know how to convert characters to bytes. In the simplest case of

ASCII strings, the number of characters and the number of bytes are the same. If the string contains Unicode
characters, you have to adjust the size accordingly. In a typical (but not necessarily every) case, one Unicode

character uses two bytes (see Figure 2 and Figure 3).

Figure 2. "Hello!" in ASCII

H e l l o !
0 1 2 3 4 5

Figure 3. "Hello!" in Unicode

H \0 e \0 l \0 l \0 o \0 ! \0
0 1 2 3 4 5 6 7 8 9 10 11

If a nine-digit Social Security Number (SSN) were a nine-character Unicode string, the size of the resulting
ciphertext would have been calculated as:

CipherText = (9 x 2) + 16 - ((9 x 2) MOD 16) = 18 + 16 - 2 = 32 (bytes)

String terminator

Depending on the programming language you use, you may need to decide whether to encrypt the end-of-string
character (NULL or '\0') along with the plaintext string value (see Figure 4).

Figure 4. End-of-string character (ASCII)

H e l l o ! \0

0 1 2 3 4 5 6

http://www.yoda.arachsys.com/csharp/unicode.html

Most popular .NET languages (such as C# or Visual Basic.NET) perform the conversion between strings and

byte arrays automatically, so you do not need to worry about string terminators; however, if you use C or C++,

a reasonable option would be to include the string terminator when converting a string to a byte array. This will
increase the size of the plaintext by one (for ASCII strings) or two (for Unicode strings) bytes. If you do not

encrypt the string terminator, after performing decryption you will need to add it explicitly.

Trailing nulls

If you are planning to store encrypted data in a database table in binary format, you must be aware that

Microsoft® SQL Server™ can trim trailing nulls of the stored data. (This feature is controlled by by the value of

the ANSI_PADDING database configuration option.) Because ciphertext can contain trailing nulls, it may be a
good idea to append a non-zero byte at the end of all encrypted values before storing them in the database (and

discard it before performing decryption). Do not forget to account for this byte when calculating the size of the

column.

Base64 encoding

Instead of storing encrypted values as binary data (byte arrays) and having to deal with trailing zeros, you can
convert them to strings. Strings are also easier to handle if you need to store them in text files, such as application

configuration files. Unfortunately, you cannot use regular strings to store ciphertext because it can contain

unprintable characters. Base64 encoding solves this problem.

In a nutshell, base64 encoding converts a byte array into a printable ASCII string, which can be later

transformed back to the original array. This is how base64 encoding works. The base64 encoding algorithm

takes every three bytes of data and converts them into four bytes of printable ASCII characters. If the size of the

incoming byte array is not an exact multiple of three, the algorithm appends equal signs (one for each missing
byte) at the end of the base64-encoded string value. This convention guarantees that the size of base64-encoded

string will always be a multiple of four. The length of a base64-encoded string can be calculated as:

Base64 = (Bytes + 2 - ((Bytes + 2) MOD 3)) / 3 * 4

where Base64 and Bytes indicate the number of bytes in the base64-encoded string and the original byte array

respectively. You can use this formula to calculate the size of the column holding base64-encoded ciphertext.

For example, if a byte array contains 13 characters of the ASCII string "Hello, world!", the size of the

corresponding base64-encoded string can be calculated as:

Base64 = (13 + 2 - ((13 + 2) MOD 3)) / 3 * 4 = 20 (bytes)

The resulting value will be "SGVsbG8sIHdvcmxkIQ==". The last two characters of the base64-encoded string

contain two equal signs ("==") indicating the two missing bytes in the last three-byte block of the byte array.

(Note: Please keep in mind that base64 encoding has nothing to do with data protection; it is not an encryption
algorithm, but a simple encoding scheme, which can be applied to the already encrypted values.)

Initialization vector

While initialization vector (IV) does not affect the size of encrypted data, it may need to be considered when

you think about encrypted data storage. Initialization vector is used by encryption algorithms (such as Rijndael,

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/tsqlref/ts_set-set_2uw7.asp
http://authors.aspalliance.com/mamanze/articles/?p=Base64
http://en.wikipedia.org/wiki/Initialization_vector

Triple-DES, and others), which support cipher-block chaining (CBC) or a similar feedback mode, in which the

result of encryption of each data block depends on the value of the previous block. When two identical plaintext

values are encrypted with the same encryption key but different initialization vectors, the resulting ciphertext
values will be different. (Note: The CBC mode is considered more secure than encryption modes, in which all

data blocks are encrypted independently of each other, such as electronic codebook, or ECB.)

The problem with cipher-block chaining is that when the first block of plaintext data is to be encrypted, there is
no previous block, so an initialization vector is used instead. This is how initialization vector works in the cipher-

block chaining mode. Before being encrypted, the first block of the plaintext data is XORed with the initialization

vector and the result of the XOR operation is encrypted producing the first encrypted block. This encrypted
block is then XORed with the second plaintext block and the result is encrypted producing the second encrypted

block. The rest of the encryption blocks are processed in a similar manner (see Figure 6).

Figure 6. Encryption in the CBC mode

The decryption routine in the CBC mode works almost the same as encryption (see Figure 7).

Figure 7. Decryption in the CBC mode

Because the initialization vector is required during decryption, it must be stored along with the encrypted data.
(Note: Unlike the encryption key, the initialization vector contains no secret, so there is no need to protect it,

although protecting it would not hurt.) Similar to salt used in hashing, the initialization vector can be stored in a

separate table column or appended to the ciphertext, in which case you must consider it in the size calculations;

because the size of the initialization vector is likely to be constant (normally, it must be the same as the size of the
encryption block), it can be easily extracted from the ciphertext value.

Salt

Having to maintain different initialization vectors (with the same encryption key) for encrypted values stored in the

http://en.wikipedia.org/wiki/Cipher_Block_Chaining#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/Cipher_Block_Chaining
http://en.wikipedia.org/wiki/Cipher_Block_Chaining#Electronic_codebook_.28ECB.29

database may become a hassle. A reasonable alternative could be using the same initialization vector but

appending a randomly generated salt at the beginning of the plaintext value before encrypting data (this is similar

to hashing with salt). If you follow this approach and encrypt data with salt, include the length of the salt value
along with the metadata needed by the decryption routine (which will need to know how many bytes of salt to

discard before returning the plaintext value) in the ciphertext size calculations.

Public-key encryption

Although public-key encryption algorithms (such as RSA) also use block ciphers, their analysis requires a

different approach than symmetric-key algorithms. First of all, you must realize that unlike encryption with
symmetric key, which can be performed on plaintext of an arbitrary size, the maximum number of plaintext bytes

that can be encrypted using a public key depends on the size of the key (and the type of padding).

For example, when using a 1024-bit RSA key with PKCS #1 v.1.5 padding (one of the most common options),
you will not be able to encrypt a string, which is longer than 117 bytes (that is 117 ASCII or 58 two-byte

Unicode characters). Increasing the size of the RSA key to 2048 bits will allow you to encrypt 245 bytes of

data, but longer RSA keys are expensive: they take more time to generate and operate. Using long public keys

(longer than 1024 bits) can seriously degrade application performance. (Note: You can encrypt longer data
values using shorter public keys by splitting these values into the smaller blocks and encrypting them individually,

but this approach is also not efficient and therefore cannot be recommended.)

Explaining how to calculate the maximum size of plaintext data encrypted using a public key deserves a separate
article. It would require the explanation of such concepts and terms as exponent, modulus, primes, factoring,

data signing, and so on. If you think that life is too short to waste on learning such grizzly details, just use the most

reliable trial-and-error approach: pick the longest data value your application may need to use and try to encrypt
it with a public key of a reasonable size (1024-bit key is considered optimal). Check the length of the encrypted

array and you will have all the information you need. Even better, do not use public keys for encrypting long

data. Because public-key encryption is designed primarily for key exchange and data signing, generally, it is not

suited for traditional data encryption.

Conclusion

When designing a database table for storing encrypted (or hashed) data, consider the encryption method the

program will use along with the data format and transformations. Although you can use simple calculations to

determine the size of memory for holding the ciphertext, always test your results using the longest plaintext value

supported by the application just to be on the safe side.

References

Base64 Explained

Cryptographic Tools (public/symmetric keys, stream/block ciphers, hash functions, etc.)

Encryption and Security Tutorial

How do I estimate the size of encrypted/decrypted data?

Initialization Vector

The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and

Character Sets (No Excuses!)
Unicode and .NET

http://www.obviex.com//Samples/EncryptionWithSalt.aspx
http://authors.aspalliance.com/mamanze/articles/?p=Base64
http://www.rsasecurity.com/rsalabs/node.asp?id=2164
http://www.cs.auckland.ac.nz/~pgut001/tutorial/index.html
http://www.xceedsoft.com/kb/result.asp?id=255
http://en.wikipedia.org/wiki/Initialization_vector
http://www.joelonsoftware.com/articles/Unicode.html
http://www.yoda.arachsys.com/csharp/unicode.html

Using Padding in Encryption
What is the RSA cryptosystem?

http://www.di-mgt.com.au/cryptopad.html
http://www.rsasecurity.com/rsalabs/node.asp?id=2214

